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— log CA, according to equation 1, yields a straight 
line. The value of p is calculated from the slope 
of the line to be 3.04, so that the highest order 
complex is Cd (glycinate) 3. The electrode reaction 
is reversible, and the average value of log ki is 
calculated by means of equation 1 to be 9.94. 

TABLE V 

POLAROGRAPHIC RESULTS FOR C A D M I U M - G L Y C I N E COMPLEX 

Each solution contains 5 X 10~4 M Cd(N03)2 , glycine 
half neutralized with KOH, KXO3 to keep p = 0.15, 25°. 

C glycinate 
0.000 

.020 

.030 

.040 

.050 

.060 

0.583 
.726 
.743 
.753 
.762 
.769 

- l o g CA 

1.699 
1.523 
1.398 
1.301 
1.222 

log ki 
(k, = 
kikzkz) 

9.93 
9.96 
9.93 
9.97 
9.93 

Av. 9.94 

The value of log ^k2 for the cadmium-glycine 
complex is reported as 8.1,18 obtained by the pB. 
method, so that log k3 becomes 1.8. I t is obvious 
from these values that the tendency to form the 
highest order complex is extremely weak, and a pos
sible structure for the complex is therefore 

H , 0 
H 2 C - N H 2 x j , N H 2 - C H 2 

I >Cd< 
O = C O x [ ^ O C = O 

NH 2 CH 2 COQ-

in which two glycinate ions are chelated but the 
third is not chelated. Douglas, Laitinen and 
Bailar20 note that monodentate groups usually 
give a coordination number of four for the cad
mium ion, but the coordination number of six seems 
to be more common for polydentate groups. In 
the structure postulated above, the coordination 
number is six, with one of the positions occupied 
by the solvent. 

We have also investigated polarographically 
the cadmium complexes of leucine, isoleucine and 
norleucine and found that the highest order com
plex in each case is CdA3

-, where A is the amino 
acid ion. These complexes are less stable than the 
glycinate complex, presumably because of steric 
hindrance. However, since the polarographic 
waves for these complexes are not strictly rever
sible, no quantitative values for the formation con
stants were calculated. 
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This paper is concerned with problems relating to dimensional changes in systems comprising long chain molecules so 
constituted as to occur, under suitable conditions, in the state of high order characteristic of native fibrous proteins. Particu
lar attention is given to the process of disordering of the molecular chains, which is treated as a reversible phase change be
tween crystalline and amorphous states. Thermodynamic relations between the force / , the temperature T and the length L 
are developed for fibers of uniform constitution, for fibers whose properties vary axially, and for systems containing a second 
component (diluent). The hitherto unexplained thermoelastic characteristics of typical fibrous proteins are readily ac
counted for by the hypothesis that decrease in length signifies melting of crystalline regions. Network structures formed by 
cross-linking polymeric chains in the oriented (crystalline) state are considered from the point of view of the statistical me
chanical theory of elasticity of polymeric systems. Significant differences as compared to networks formed by cross-linking 
disordered chains in the usual manner are noted: the length to which the cross-linked fiber will shrink on melting in the ab
sence of a force is predicted to increase approximately as the square root of the degree of cross-linking; at extensions sub
stantially greater than this relaxed length, the force of retraction should be independent of the degree of cross-linking. 
By combining these results of the statistical theory of elasticity with the thermodynamic relationship d ( / / T) /5(1 /T) = 
AH/AL, where AH and AL are the latent changes in heat and length accompanying melting, the force, length and tempera
ture may be related over ranges which include the phase change. The elevation of the melting point which should result 
from cross-linking in the ordered state is treated theoretically. 

Introduction 
The physical structures of fibrous proteins have 

been extensively investigated by the techniques of 
X-ray diffraction, electron microscopy, optical 
birefringence and polarized infrared absorption. 
The principal features of the arrangement of the 
polypeptide chains consequently are reasonably 
well established, although certain details remain ob
scure. A state of molecular organization appro
priately designated as crystalline is the dominant 
structural characteristic brought to light by these 
studies. 

In contrast to the comparatively advanced state 
of knowledge concerning the structures of fibrous 
proteins, little progress has been achieved toward an 
understanding of the physical properties of pro
teins. In particular, the mechanism by which pro
tein fibers undergo major changes in length has not 
been satisfactorily explained. Analogies to the 
deformation of rubber have been suggested,12 but 
with no more than limited success. This is not 

(1) K. H. Meyer, Proc. Roy. Soc. (London), B139, 498 (1952); 
K. H. Meyer, A. J. A. van der Wyk, W. Gonon and C. Haselbach, 
Trans. Faraday Soc, 48, 009 (1952). 

(2) E. Guth, Ann. N. Y. Acad. Sci., 47, 715 (1947). 



Oct. 20, 1956 THEORY OF ELASTIC MECHANISMS IN FIBROUS PROTEINS 5223 

surprising in view of the prevalence of an ordered 
crystalline arrangement of the polypeptide chains 
in proteins. Crystallinity, and processes of melt
ing and crystallization, must markedly influence 
these properties, and especially those involved in 
transformations such as denaturation, swelling 
and deformation. The fact that present struc
tural information has not been brought to bear on 
these phenomena, may be attributed to the lack of 
suitable theories relating to the mechanical prop
erties of crystalline, and especially semi-crystal
line, polymers.3 

From studies of the thermoelastic behavior of 
collagen, elastin and muscle, Wohlisch4 pioneered 
the concept of melting during shrinkage, and crys
tallization on stretching. A. V. Hill6 and E. Ernst 
and co-workers6 reached similar conclusions from 
studies of the thermal and volume changes accom
panying contraction and stretching of muscle 
fibers. These authors, however, have been disin
clined to regard melting and recrystallization as the 
processes primarily responsible for the dimensional 
changes in muscle. Ernst6 states emphatically 
that these processes are merely incidental to the 
deformation mechanism, and not the basis for the 
mechanism itself. Other authors do not consider 
that melting and crystallization have any special 
relevance to the problem. 

The situation is somewhat clearer in the case of 
collagen. The shrinkage of collagen is essentially a 
melting phenomenon,4'7'8 and it has been shown re
cently that the process may properly be regarded as 
a phase transition.8 Wiederhorn and co-workers7 

attempted to treat the influence of the stress de
veloped in collagen fibers held at fixed length on 
the melting point according to an approximate 
theory9 of crystallization in stretched rubber net
works—a theory which is inappropriate for a 
highly oriented fiber. In spite of records of these 
views in the literature, it would be erroneous to 
conclude that designation of the shrinkage of col
lagen as a melting process has gained widespread 
acceptance at the present time. 

It is a premise of the present paper that dimen
sional changes in fibrous proteins are integrally re
lated to changes in crystallinity.10 The force of 
retraction manifested under conditions favoring 
contraction is considered to originate in a shift in 
the crystalline-amorphous equilibrium. Polypep
tide chains freed by melting from the ordered and 
relatively extended configuration characteristic of 
the crystalline state adopt random configurations, 
except as restricted by the applied stress. For any 
stress likely to be borne by amorphous chains, the 
length of the random chain molecule projected on 
the fiber axis will be considerably less than its 

(3) P. J. Flory, Science, 124, 53 (1956). 
(4) E. Wohlisch, Biochem. Z., 247, 329 (1932); Kolloid Z., 89, 239 

(1939); Naturw., 28, 305, 326 (1940); E. Wohlisch, H. Weitnauer, 
W. Grfining and R. Rohrbach, Kolloid Z., 104, 14 (1943). 

(5) A. V. Hill, Proc. Roy. Soc. (London), B139, 464 (1952). 
(6) E. Ernst, J. Balog, J. Tigyi and A. Sebes, Ada Physiol., 2, 243 

(1951); E. Ernst, G. Lodanyi and J. Tigyi, ibid., 2, 271 (1951). 
(7) B. A. Wright and N. M. Wiederhorn, J. Polymer Sci., 7, 105 

(1951); N. M. Wiederhorn and G. V. Reardon, ibid., 9, 315 (1952). 
(8) R. R. Garrett and P. J. Flory, Nature, 177, 176 (1956). 
(9) P. J. Flory, J. Chem. Phys., IB, 397 (1947). 
(10) See also reference 3. 

length in the crystalline state. Thus, melting must 
bring about contraction. 

The foregoing viewpoint is manifestly plausible 
in the light of knowledge of the behavior of long 
chain molecules in general. It is substantiated 
moreover by various observations on processes of 
dimensional change in fibrous proteins, as has been 
discussed elsewhere.3 We shall be concerned there
fore with the formulation of suitable relationships 
by means of which to proceed with application of 
the stated hypothesis to deformation phenomena. 
In attempting to achieve this objective we find 
that current theories of elastic deformation and 
crystallization, developed for other, less organized, 
linear polymers, are not immediately applicable. 
It is necessary therefore to consider carefully the 
morphological features which distinguish the struc
tures of fibrous proteins from other polymers. 

The presence of a well developed fibrillar struc
ture is of foremost importance in this connection. 
Long fibrils, or filaments, with diameters of 80 to 
200 A., or only about one order of magnitude 
greater than the diameters of the individual molec
ular chains, can be distinguished in silk fibroin, 
myosin, collagen and elastin. Near perfect axial 
alignment of chain molecules prevails within the 
fibrils according to wide angle X-ray diffraction. Fi
brillar order resembling that in proteins is sometimes 
observed in highly oriented synthetic polymers.11 

A considerable proportion of amorphous material 
usually co-exists with these oriented fibrils, hence it 
seems justifiable to make the generalization that 
fibrillar organization in proteins exceeds consider
ably that to be found in mechanically oriented 
synthetic polymers. 

The prevalence of iw/ramolecularly hydrogen 
bonded chain configurations in most native fibrous 
proteins (/3-forms excepted) seems well established. 
Those of the k-m-e-f group probably occur in the 
a-helical form proposed by Pauling and Corey.12 

The "protofibrillar" element of collagen probably 
consists of three chains wound together helically,13 

and not of a single chain molecule. In both in
stances the stability of the structure is derived from 
internal hydrogen bonds; such bonding as may oc
cur between adjacent fibrillar elements must be 
very weak. Experiments on dilute solutions of 
collagen14-16 and of synthetic polypeptides17 indi
cate that individual protofibrillar elements, com
prising either a single molecule or several (three) of 
them wound together, are capable of stable exist
ence independently of one another.18 Collagen14'16 

(11) K. Hess, "La Recerca Scientifica," Supplemento 1955 , Vol. 25 
(12) L. Pauling and R. B. Corey, Proc. Natl. Acad. Sci., 37, 272 

(1951). 
(13) G. N. Ramachandran and G. Kartha, Nature, 176, 593 (1955); 

A. Rich and F. H. C. Crick, ibid., 176, 915 (1955); P. M. Cowan, 
S. McGavin and A. C. T. North, ibid., 176, 1062 (1955). 

(14) M. B. Mathews, E. Kulonen and A. Dorfman, Arch. Biochem. 
Biophys., 52, 247 (1954). 

(15) P. M. Gallop, ibid., 54, 486 (1955). 
(16) H. Boedtker and P. Doty, THIS JOURNAL, 77, 248 (1955). 
(17) E. R. B lou tandM. Idelson, tft'd., 78, 497 (1956); P. Doty and 

J. T. Yang, ibid., 78, 498 (1956); P. Doty, J. H. Bradbury and A. M. 
Holtzer, ibid., 78, 947 (1956). 

(18) J. A. Schellman, Compi. rend. trav. Lab. Carlsberg, Serie Chim., 
29, 223 (1955). 
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and gelatin19 molecules, even in dilute solution, ap
pear to transform from the random-coil form pres
ent at elevated temperatures to the protofibrillar 
form when cooled. 

In the light of these observations it seems plausi
ble to assume that fibrogenesis in vitro is preceded 
by formation of protofibrillar elements.20 These are 
stabilized by intramolecular hydrogen bonds. They 
subsequently aggregate from the dilute solution 
in which they are initially dispersed. The result
ing aggregates assume fibrillar form as an obvious 
consequence of geometrical requirements. It is 
possible to show, moreover, that the intramolecular 
attractive energy required for aggregation of such 
highly asymmetric particles is very small.21 The 
formation of protofibrils prior to aggregation and 
the occurrence of aggregation in a medium of low 
concentration are factors favoring a high degree of 
parallel order such as is observed in typical fibrous 
proteins. 

Formation of fibers from synthetic polymers 
contrasts markedly with the process of fibrogenesis 
envisioned above. In the first place, the crystallin-
ity encountered in synthetic polymers ordinarily 
derives much of its stability from interchain forces. 
No stable protofibrillar precursor is therefore to be 
expected; even if such elements were present, the 
high viscosity of the medium—melt or fairly con
centrated solution—would hamper systematic ag
gregation of them. The dimensions of the crystal
lites which form are consequently much smaller 
than the length of a molecule. (The degree of 
crystallinity usually is comparatively low, i.e., 
around 50% or less.) Macroscopic fiber orienta
tion is not spontaneously generated; it is developed 
only by externally induced orientation of the 
crystalline regions. 

If cross linkages22 occur in the fibrous proteins, 
they may be presumed to be formed subsequent to 
generation of the fiber. They must therefore be 
superimposed on, or in, a previously ordered struc
ture. It is essential to recognize how this circum
stance contrasts with the cross-linking of a poly
mer as ordinarily carfied out in the amorphous 
state in which the molecular chains are disordered 
and randomly coiled. Theories previously devel
oped for cross-linked polymers may not, therefore, 
be directly applicable to fibrous proteins (see Part 
H). 

An attempt to treat the elastic properties of or
dered structures such as seem to be involved in 
fibrous proteins will be presented in this paper. 
Part I is concerned with the formulation of suit
able thermodynamic relations for application to 
ordered fibrils in which the crystal-amorphous phase 

(19) C. Robinson, "Nature and Structure of Collagen," Edited by 
J. T. Randall, Butterworths, London, 19.53, p. 96; C. Cohen, Nature, 
175, 129 (1955). 

(20) Protofibrils of collagen are discussed by R. S. Bear, "Advances 
in Protein Chemistry," Vol. VII, 1952, p. 69. J. Gross, J. H. High-
berger and F. O. Schmitt, Proc. Natl. Acad. Set., 40, 679 (1954), refer 
to a tropocollagen particle in this connection. 

(21) P. J. Flory, Proc. Roy. Soc. (London), A234, 73 (1956). 
(22) The term cross linkage as here used includes only those bonds 

between adjacent molecular chains which are of sufficient permanence 
to survive melting and deformation, or swelling, without rupture or 
exchange with other cross-linking sites. Intermolecular hydrogen 
bonds would not ordinarily be included as cross linkages as here de
fined. 

transition is coupled with dimensional changes. 
The theory of elasticity of a system for molecules 
initially in parallel array but subsequently con
verted to the amorphous state is presented in Part 
II. The necessary modification of the elastic 
equation of state (i.e., the force-length-temperature 
relation) by incidence of crystallization is developed 
in Part III. 

Glossary of Principal Notations 
L length of sample 
La, 5% etc. length, entropy, etc., of sample when totally 

amorphous 
L°, S°, etc. length, entropy, etc., of sample when totally 

crystalline 
Li length of sample in isotropic (amorphous) 

state 
a relative length L/L; 
AH, AS, AL total changes in heat content, entropy and 

length upon melting crystalline sample 
As entropy change per repeating unit 
Ah' heat of fusion per mole of statistical segments 
N fraction of sample in the amorphous state 
/ force of retraction 
a'-, aT linear thermal expansion coefficients, amor

phous and crystalline 
N no. of units in one molecular chain extend

ing the length of the fiber (Part I) 
A7, t o t a l no . of statistical segments in t h e en t i r e 

sample (Part I II) 
v total no. of chains in the network structure 
<r, o-j no. of chains, or chain vectors, in a cross-

section 
r2, r0

% mean square end-to-end length of a chain, 
and the same quantity for unconstrained 
chains 

x, y, z components of the end-to-end chain vector r 
n', V no. of statistical segments per chain, and 

length of each 
< a > linear dilation factor (z/2/^2)1/ ' 
V total volume 
v molar volume 
<a>0, Vo, L,0 values of corresponding quantities in ab

sence of diluent 
Tm, Tm', Tm° melting temp., melting temp, at / = 0, 

(L = Li), and melting temp, for L = Lc 

Part I. Thermodynamics of Deformation of Semi-
crystalline Fibers 

The differential of the Gibbs free energy F of a 
fiber subject to a uniform tensile force/acting in the 
direction of the fiber length L may be written 

dF = -SdT+ VdP +fdL (1) 

where S and V are the entropy and volume of the 
fiber, and T and P are the temperature and pres
sure. For equilibrium to prevail at constant T, P 
and L, the free energy F must be a minimum with 
respect to all permissible displacements of the sys
tem, i.e. 

&F ^O (2) 

for every virtual displacement consistent with the 
restraints on the system. In particular, the free 
energy must be a minimum with respect to changes 
in the fraction 1 — X of the fiber which is crystalline, 
i.e. 

(bF/d\)p,T,L = 0 (3) 

The function F — fL may be used to advantage 
when P, T and / are chosen as independent varia
bles. Thus 

d(F - JL) = -SdT+ VdP - Ld/ (4) 

and the necessary and sufficient condition for equilib-
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rium a t constant P, T a n d / is expressed by 
S(F - /L) ^ 0 (5) 

with respect to all permissible variations of the 
system. For systems in which tensile deformation 
is involved, the function F — fL occupies a role 
analogous to t h a t of the free energy F for systems 
wherein isotropic changes in volume are the only 
dimensional changes permitted. 

Uniform Fibers.—We first consider fibers which 
are homogeneous and uniform in chemical com
position, s tructure and cross-section throughout, 
apar t from such differences in cross-section as may 
arise from differences in crystallinity along the 
length of the fiber. As we shall be primarily con
cerned with fibers of very small cross-section {i.e., 
fibrils), it will be justified to consider t ha t all poly
mer chains within any given cross-section occur 
either in the crystalline or in the amorphous state. 
The fraction A of the fiber which is amorphous may 
therefore be identified with the ratio of the length 
of tha t portion of the fiber which is amorphous to 
the length of the entire fiber when totally amor
phous a t the same P, T a n d / . 

Under the foregoing conditions each element of 
the fiber, or fibril, which is amorphous will be 
characterized by the same intensive variables, 
e.g., specific volume, specific entropy and specific 
length; the same applies to the crystalline regions. 
We may therefore formulate the total free energy as 

F = XF- + (1 - \)F° (6) 
where F a and Fc are the free energies of the fiber 
when totally amorphous and totally crystalline, re
spectively, under the given conditions specified by 
the values of P, T and / . Other extensive proper
ties (S, L, H, etc.) may be expressed in a corre
sponding manner. In order for crystalline and 
amorphous regions to coexist (i.e., 0 < X < 1) a t 
equilibrium the necessary and sufficient condition 
(5) requires t ha t [d(F - fL)/bX]P,T,f = 0, and 
hence according to (6) t ha t 

(F-- fL-) = (F" - fL") (7) 
The change in the equilibrium retractive force / 

with temperature when amorphous and crystalline 
regions coexist may be transformed as 
(d//d7>, eq = (df/dT)P, A(P-/L)_o 

= - [C)A(F - fL)/bT]P. i IbA(F - fL)/df] -iP,r 
where the subscript eq stands for amorphous-crys
talline equilibrium, and A signifies the difference 
between the values for the subsequently designated 
quant i ty in the amorphous and crystalline states 
a t the same P, T and / . Upon evaluating the deriva
tives through use of eq. 4, we have 

(bf/bT)P = -AS/AL (8) 

where AS and AL are the changes in entropy and 
length on fusion of the entire fiber a t constant T, P 
and / . As this equation holds for any value of X 
(for the one component system under considera
tion), provided only t ha t 0 < A < 1, it must hold 
also for any value of L so chosen as to be consist
ent with the coexistence of amorphous and crys
talline polymer. Hence, we could have written 

(bf/bT)p,i = (bf/bT)P,L = -AS/AL (8') 

which may be deduced alternatively from the well 
known thermoelastic relation 

(Z>f/bT)P,L = -(bS/bL)T.p (9) 

Equation 9 follows directly from eq. 1. 
The entropy change on melting the crystalline 

fiber a t constant P, T a n d / i s given by 
AS = Qrev IT = (AE + PAV - f AL)IT 

= (AH- - f AL)/T 

where Qlev is the heat absorbed in reversible melt
ing, and AE and AH are the concurrent changes in 
internal energy and enthalpy, respectively. Sub
stitution in eq. 8 yields the relationship previously 

(bf/bT)P = f/T - AHITAL (10) 

derived by Gee23 using a similar method.24 '25 

Gee's equation is expressed in more compact form as 
[d(flT)ld(l/T)]P = AH/ AL (11) 

Ordinarily AL < 0 whereas AH > 0; hence, f/T 
will increase with T when the fiber contains both 
crystalline and amorphous zones. 

Equations 10 and 11 are obvious analogs of the 
Clapeyron equation. In the former equations 
—/ and L occupy roles corresponding to those 
of P and V in the latter. The temperature T may 
be regarded as the melting temperature Tm under a 
force / and a pressure P. I t is implicit in the fore
going formulation for a system of one component, 
with uniform properties throughout as specified 
above, tha t the equilibrium force / must be inde
pendent of the length over the two-phase range at 
constant T and P, in further analogy to the relation 
of P to V in the two-phase region of an ordinary 
one-component system a t constant temperature. 

Systems Containing a Diluent.—If the fiber, or 
fibril, comprises more than one component, e.g., if 
it contains a diluent in addition to the polymer, 
equilibrium between crystalline and amorphous 
phases requires t ha t F — fL shall retain its mini
mum value when Sm moles (or moles of structural 
units) of component i are transferred from the 
crystalline to the amorphous phase a t constant P, T 
a n d / , and hence t ha t 

d(F - /L) = dnm11 - Snm° = 0 
or 

Ml* = Mi0 (12) 

where £i;a and nf are the chemical potentials of com
ponent i in the amorphous and crystalline regions, 
respectively, i.e. 

Mia = (dF'/dnOp.T.L.r,^^ = [S(F* -fL*)/bm]p,T,f.ni9i; 

(13) 

with analogous definition of (if. Here F* and Fc 

may be regarded as the free energies of the totally 
amorphous and totally crystalline fiber, respec
tively, a t the same compositions as the amorphous 
and crystalline regions in the partially crystalline 
fiber, and a t the same P, T a n d / . 

If the system consists only of the two phases 
crystalline and amorphous (i.e., if there is no super-

(23) G. Gee, Quart. Rev., 1, 265 (1947). 
(24) G. Gee, private communication, 
(25) E. Wfihlisch, Naturw., 28, 305 (1940), has given the incorrect 

relationship 

(bf/bT)p.L = -(bAHIbAL)P.T/T 

(in present notation) for the force—temperature coefficient, apparently 
obtained by substituting AS = AH/T, instead of AS - (AH - /AL)/ 
T, in eq. 9. 
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natant solvent phase), then the necessary and suf
ficient conditions for equilibrium are expressed by 
a set of equations like (12) for each component. 
We shall be concerned primarily with the case of a 
single polymer constituent in the presence of a dilu
ent (e.g., water), and it will be assumed, as an ap
proximation, that the diluent occurs only in the 
amorphous phase, the crystalline phase being unaf
fected by the diluent. The more general conditions 
for phase equilibrium then reduce to the single re
quirement 

Ma" = M2° (14) 

where the subscript 2 signifies polymer; or 
Mu" = Mu0 ( 1 4 ' ) 

where /ju is the chemical potential per mole of struc
tural units. While the foregoing assumption may 
not be fully justified for fibrous proteins, the com
plications necessitated by incorporation of the 
additional condition ^1

2 = ,mc (where the subscript 1 
refers to the diluent) seem not to be justified by the 
greater rigor and generality thus made possible. 

Proceeding as in the preceding section, we find 
(d//ar)p,„ = -[d(M„a - ^)/dT]p. .,,„/ 

[ d W - Mu0Vd/] P. T, n 

where the subscript n denotes constancy of compo
sition in the amorphous phase; the crystalline 
phase is assumed pure and therefore of fixed com
position. The numerator may be evaluated as the 
difference between the partial molar entropy in the 
amorphous phase and the molar entropy in the 
crystalline phase; the denominator must then be 
expressed as the difference between a partial molar 
length (amorphous) and a molar length (crystal
line). The awkwardness of the latter quantities 
may be avoided through multiplication of both 
numerator and denominator by the total number of 
structural units in the fiber. The result can then be 
expressed as 

(d / / d7> , , ; = -XS/AL (15) 

where 

AS = S"- - S' 

Al = "if - L" 

Here 5 a and Z a are partial derivatives of the total 
entropy and length, respectively, of the amorphous 
phase with respect to the fraction (X) of the polymer 
in that phase. The crystalline phase being as
sumed pure, Sc and Lc are the entropy and length of 
the totally crystalline fiber at the same T, P and /, 
in accordance with notation employed in the pre
ceding section. 

It follows also that 
lKf/T)/d(l/T)]P.n = AR/AL (16) 

where Ai? is similarly defined; it comprises the 
heat of fusion AH and the differential heat of dilu
tion. 

Two cases will be considered. In the first the 
total quantity of solvent associated with the poly
mer is fixed; i.e., the fiber and contents operate as a 
closed system. The concentration of polymer in the 
amorphous phase (i.e., solution) must consequently 
increase as melting progresses. Constancy of com
position of the amorphous phase then implies con

stancy of X and we therefore re-express eq. 15 and 16 
as 

CdJZdT)P1 x = -AS/AL (15') 

[d(f/T)/d(l/T)]p.x = AH/AL (16') 

The relative partial molar quantities AS, AL and 
AH will vary with composition, hence the force-
temperature derivative will depend on X. It is to 
be noted that under these circumstances [d(f/T)/'d-
(1 /T)]p x is not to be identified exactly with [d(f/ 
T)/d(l/T)}p,L, for 
[d(//D/d(l/r)]p,x = W/T)M1/T)]P.L + 

(l/T)(df/dL)p,T [dL/b ( l / r ) ]p ,x (17) 

The force being dependent upon the length, the 
second term on the right does not equate to zero. 

In the second case to be considered the amor
phous portion of the fiber is in equilibrium with an 
excess of diluent present in a separate (superna
tant) phase. Fulfillment of equilibrium then re
quires, in addition to the condition expressed by 
eq. 14, that 

Mi8 = MI" 

where /iis is the chemical potential of the diluent in 
this phase. The mixed phase is in equilibrium with 
two pure phases, and the system is univariant at 
constant pressure. The degree of swelling of the 
amorphous (mixed) phase may be considered to be 
controlled by cross linkages or other factors whose 
effect is constant, in conformity with the assump
tion of uniformity of the fiber. The composition 
of the amorphous phase will then be independent of 
X. Since the system is univariant, the force will be 
uniquely determined by the temperature (at con
stant pressure), hence total melting should occur 
at constant force as in the case of the one-compo
nent system considered in the preceding section.26 

It follows that 

(d//dZ,)? , T = 0 

for 0 < X < 1, and hence that 
[ d ( / / D / d ( l / r ) ] p ; X = [d(f/T)/d(l/T)]p,L 

Under the foregoing conditions, eq. 15 and 16 re
quire revision as 

(df/dT)p.x=(df/dT)p.L= -AS/AL= ^ (18) 

W/T)/d{l/T)p,x = [d(f/T)/da/T)]p, L = AHfAL (19) 

where the double barred quantities represent 
changes for the process: 

crystalline fiber + diluent = soln. of vol. fraction V2 

In other words, the double barred quantities refer 
to the sums of latent changes on melting plus inte
gral changes for mixing with solvent to the equilib
rium concentration in the mixed phase. Accord
ing to the assumptions, these quantities remain 
constant throughout melting, in contrast to the 
situation for two phases where the amount of di
luent in the mixed phase is fixed. 

Non-uniform Fibers.—Variations in the chemical 
structure and cross-section of the fiber along its 
length will broaden the transition between crystal
line and amorphous forms. The primary effect of 
a variation in chemical structure will be manifested 

(26) The system considered is formally analogous to the three-
phase, two-component system consisting of a liquid solution simul
taneously in equilibrium with the solid solute and the solvent vapor. 
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in a change of the melting point a t a given force, or 
in the critical force for a given temperature, the 
pressure being constant. A variation in cross-
section will be reflected in the stress, and as melting 
equilibrium must depend directly on the stress, 
such variations will lead similarly to different values 
for the critical stress in various cross-sections.27 

The transition may thus occur over a range of ten
sile force a t constant T and P, instead of at a unique 
force, in systems which otherwise would be univari-
ant at constant pressure as previously discussed. 

In accordance with these considerations it is ap
propriate to characterize various sections of the 
fiber, or fibril of small cross-section, by their 
critical forces / j at the given T and P. Let pj desig
nate the fraction of the length of the fiber in its ref
erence state, conveniently taken to be the totally 
crystalline fiber, which may be characterized by a 
critical force/j t o / j + d/j; i.e. 

Pi = -dx/d/ j (20) 

where X is specified as a fraction of the reference 
length which is amorphous a t T, P and / = / j . 
The tota l length of the fiber under a force / will 
then be 

where Lf is the total length for the corresponding 
uniform fibril made up exclusively of elements iden
tical with element j when totally crystalline under 
the conditions specified by T, P a n d / ; Lf is the 
length of this hypothetical uniform fibril in the 
amorphous s tate under the specified conditions. 
In other words, if N is the total number of struc
tura l (peptide) uni ts along one molecular chain ex
tending throughout the fibril, then Lf/N and Lf/N 
are the (average) components along the fiber axis 
of structural units in element j when crystalline 
and amorphous, respectively. If the fiber is suf
ficiently uniform in cross-section to allow replace
ment of Lf and Lf for all j by average values, Lc and 
L", the foregoing equation reduces to 

L S (1 - \)L" + XZ> (22) 

which is an analog of eq. 6. 
The length- temperature coefficient a t constant 

force may be obtained readily from an expression 
for the entropy analogous to eq. 21, thus 

S = N Jf_^ Pwsfdfi + N ff" Pmsf&fi (23) 

where sf and sf are entropies per structural uni t in 
element j , and o-j is the number of chains passing 
through section j . By application of the relation
ship (bS/bf)p, T = (dL/dT)P f, we obtain from eq. 
23 

(dL/dT)P, f = j f _ a p^Lf/dDp. s d/j + 

§J Pi(.dL*i/dT)P, s d/j - Np/vfAsf (24) 

where pf, at and Ast refer to values of the respective 
quantit ies in the cross-sectional element for which 
crystalline and liquid phases are in equilibrium at 

(27) Our choice of the force rather than the stress as the variable 
in the thermodynamic analysis is dictated by the uniformity of the 
former throughout the length of the fiber, irrespective of the variations 
considered. 

the fo rce / , i.e., a t the finite limits of the integra
tions. The linear thermal expansion coefficients 

CCT-," = (Lf)-\dLf/dT)p,, 

ah = (Lf)-I(ZLfZdT)P,, 

should be comparatively insensitive to the stress 
and to minor structural variations along the fiber. 
Hence, with negligible error they may be replaced 
by «x and aT for all j . Equat ion 24 then becomes 

(dLZdT)p, { = aT° ff ^ PiLf d/j + 

«r* J ° PiLfdfi - X<r,p,As/ (25) 

With the introduction of the approximations used 
above in eq. 22, we have 

(dL/dT)p, / S ( I - \)L"aT" + M>«i* - NpiaAs (26) 

where at and Ast, in accordance with the other ap
proximations, are replaced by average values. 

Now the linear thermal expansion coefficient a J 
for the crystalline phase may be presumed to pos
sess a positive value similar to tha t for crystalline 
organic compounds, i.e., 1 to 2 X 10~4 0 C . - 1 . The 
values of a? , on the other hand, should be negative, 
(except a t very low forces28), and, according to elas
ticity theory for rubber-like polymers it should be 
approximately equal to —1/2", i.e., ca. 3 X 10~3 

0 C . _ 1 a t ordinary temperatures. In comparing 
the first and second terms it is to be noted however 
tha t 2> will be considerably smaller than Lc, ex
cept a t very high stresses. Hence 2 > a r a may not be 
much greater in magnitude than Lcarc. The sign 
of the sum of the first two terms will depend on the 
degree of crystallinity; for low degrees (1 — X), 
their sum will be negative, and for greater 1 — X it 
will be positive. 

The third term in eq. 26 represents the contribu
tion—always negative—to the length- temperature 
coefficient due to increase in crystallinity with 
stretching. I t s magnitude depends directly on the 
fraction pt of the fiber which undergoes the amor
phous-crystalline transformation per unit increase 
in force a t P, T and / . At intermediate degrees of 
crystallinity, this term may dominate others on the 
right-hand side of eq. 26, with the result t ha t 
(dZ/d T) p, / will be strongly negative. At sufficiently 
high degrees of crystallinity, pi will necessarily di
minish toward zero, and the first term, representing 
the positive thermal expansion of the crystalline 
fiber, will be dominant. 

Thus, the totally amorphous fiber (X = 1) should 
exhibit moderate negative thermal expansion (rub
ber-like), except at very low deformations (see 
footnote above). At intermediate degrees of crys
tallinity, (dL/dT)p,f should be strongly negative. 
As the degree of crystallinity is increased (i.e., with 
increase in length) it should reach a minimum value 
(maximum negative value), then increase, becom
ing positive at high degrees of crystallinity as al
ready noted. 

The more frequently measured force-tempera-
(28) When / = 0, the amorphous, or liquid, fraction may display a 

normal, i.e., positive thermal expansion coefficient. In analogy with 
rubber, "thermoelastic inversion" of ay a should occur at the force re
quired for a comparatively small deformation; for larger forces aTa 

will be negative, approaching — 1/T asymptotically at large/. 
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ture coefficient (df/bT)p, L may be derived from 
(dL/dT)pjby using the relation 

(df/dT)P,L = -(bf/i>L)p,T(bL/dT)p., (27) 
Since (bf/dL)pt T is always positive, the sign of 
(df/dT)Pt L will be opposite to that of (bL/bT)Ptf, 
and it will reach zero at the same length or force, as 
that at which the latter coefficient is zero. The 
foregoing conclusions may therefore be applied to 
the interpretation of (d//dZ,)p, T- This coefficient 
should be positive for the totally amorphous poly
mer, increase with crystallization to a maximum, 
then decrease to zero, becoming negative at high 
degrees of crystallinity. The behavior here pre
dicted is substantiated by observations on various 
fibrous proteins,29-31 whose peculiar thermoelastic 
characteristics have not heretofore received satis
factory explanation.3 

Part II. Statistical Theory of Elasticity in Oriented 
Non-crystalline Fibers 

In the usual statistical theories of elasticity of 
cross-linked polymers, network structures are con
sidered to have been formed by cross-linking a sys
tem of random coiling, long chain molecules while 
in an equilibrium set of configurations. The initial 
system is necessarily isotropic if this condition is 
fulfilled. We now undertake to derive an elastic 
equation of state for an amorphous (i.e., non-crys
talline) network structure formed under conditions 
such that the chain molecules were not in equilib
rium configurations at the moment of generation 
of the network (although the random situation will 
be included as a special case). Particular attention 
will be devoted to network structures formed by 
imposing cross linkages, or permanent interconnec
tions of any other nature, between adjacent chain 
molecules while in a state of orientation. This ori
entation may have been induced by an externally 
applied stress, or it may have arisen spontaneously 
in the process of forming fibrils from highly asym
metric protofibrillar particles (see Introduction). 
The polymer may have been crystalline, or partially 
so, when the interconnections were superimposed 
on it. We would by no means exclude the possibil
ity of forming cross linkages within (oriented) 
crystalline regions; this would, in fact, seem to be 
properly descriptive of the circumstances attending 
cross-linking in fibrous proteins. The elasticity re
lations to be derived in this section of the paper ap
ply, however, only to the polymer in the amorphous 
state irrespective of the state of the polymer during 
cross-linking. We may, for example, consider the 
elastic properties of a network structure which was 
formed by cross-linking oriented and crystalline 
chains and subsequently converted to the amor
phous state by melting. 

Besides ordinary valence cross linkages between 
polymer chains, the interconnections may conceiv
ably be imposed by interfibrillar material, possibly 
occurring at fairly definite intervals along the fiber 
axis as in the case of the Z-bands in muscle. The 
interconnections may even be provided by crystal
line zones bounding the amorphous zone under con-

(29) H. B. Bull, THIS JOURNAL, 6T, 533 (1945). 
(30) A. Weber and H. Weber, Biockem. Biophys. Acta, 7, 214, 339 

(1951). 
(31) M. Morales and J. Botts, Disc. Faraday Soc, 13, 125 (1953). 

sideration, which thereby fix the relative positions of 
the ends of the chains running along irregular 
paths through this intervening amorphous region. 
In this latter case we shall be obliged, for the pur
poses of this section of the paper, to assume that the 
content of the amorphous regions remains un
changed during deformation, the boundaries with 
the crystalline zones neither advancing by further 
crystallization into the amorphous region nor re
ceding by melting when the sample elongates or 
contracts. The conditions of phase equilibrium 
which govern the situation when this restriction is 
removed will be dealt with in Part III . 

In conformity with procedures previously 
adopted in dealing with network structures,32'33 

we define a chain as that portion of a molecule ex
tending from one cross-linked unit to the next along 
the given molecule. Each such chain may be char
acterized by a vector r connecting the average po
sitions of its ends (i.e., the bounding cross-linked 
units). The state of the system as a whole is speci
fied by its chain vector distribution. If the cross 
linkages are formed within crystalline regions, or 
in amorphous zones neighboring on crystalline re
gions, this distribution may be altered somewhat on 
melting at fixed external dimensions of the sample. 
Such alteration should be small, and in any case is 
unimportant, as we shall be concerned only with the 
vector distribution in the amorphous state. It will 
be assumed that this distribution is altered directly 
as the macroscopic dimensions when the sample is 
deformed; i.e., an affine transformation of the aver
age positions of the cross-linked units is assumed. 

Finally, we shall assume gaussian polymer 
chains.32 The probability that a given chain, free 
from all constraints, exists momentarily in a con
figuration such that the cartesian components of its 
end-to-end vector are in the ranges x to x + dx, y to 
y + Ay, z to z + Az, is therefore expressed as 
W(x, y, z) dx dy dz = 

( 3 / 2 ^ ) e x p [ - ( 3 / 2 ^ ) ( x 2 + y2 + z2)]dx dy dz (28) 
where r0

2 is the mean square of the end-to-end dis-
tance of the free chain. For gaussian chains r0

2 is 
proportional to the (average) number of units in a 
chain. It will be convenient for later purposes to 
express this relationship as 

7? = n't'* (29) 
where n' is the number of statistical elements in the 
so-called "equivalent statistical chain"34 and V is 
the length of one element. At maximum extension 
r = rm where 

rm = nT (30) 
Equations 29 and 30 serve to define the parameters 
n' and / ' in terms of quantities rQ

2 and rm, which are 
susceptible to evaluation. 

The configuration entropy of the system charac
terized by a given set of vectors Tj, one for each 
chain, will contain a term 

kE\n W[Ij) = (kv/2)[-(3/rj)(x* + y> + ?)] 
j 

(32) P. J. Flory, "Principles of Polymer Chemistry," Cornell Univ. 
Press, Ithaca, N. Y., 1953, pp. 458-470. 

(33) L. R. G. Treloar, "The Physics of Rubber Elasticity," Oxford 
Univ. Press, New York, N. Y., 1949. 

(34) See ref. 29, pp. 411-413. 
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for the internal configurations of the chains, where 
v is the total number of chains; x2, y2 and s2 are 
the average squares of the components of the chains 
in the specified state, and k is the Boltzmann con
stant . The sum of the components, i.e., the quan
t i ty x2 + y2 + z2, equates to the mean-square end-
to-end distance designated by r2. The number v of 
chains must necessarily equal the number of inter-
molecularly cross-linked units. 

The contribution to the entropy from the ran
dom distribution of the interconnections over the 
total volume V must be considered in addition to 
the chain configuration expressed above. If the 
interconnections consist of tetrafunctional cross 
linkages (i.e., cross linkages between two mole
cules, which therefore join the ends of four chains, 
defined as above), the number of cross linkages will 
be half t he number of chains, or v/2. Hence, the 
resulting entropy term may be written32,36 '36 

0 / 2 ) In V + Constant 
The network configuration entropy is therefore of 
the form32-35 

(kv/2)[-3(p +yi + z*)/7? + In V + Const.] 
Since the transformation of average chain coor

dinates is assumed to be affine for all deformations 
(in the amorphous state) including dilation through 
swelling by a solvent, it is evident t ha t the volume 
V will be proportional to (x2 y2 z2)1^. The refer
ence s tate is conveniently taken as the isotropic 
network with mean-square vector components X0

2 = 
ya

2 = Zo2 = T0
2IZ. Thus, in addition to the stipula

tion of isotropy, the last equality requires tha t the 
dilation in the reference s tate shall be such tha t 
the resultant mean-square chain vector length 
will equal its value for the unconstrained free 
chains (i.e., ra

2). If for example the network was 
formed in the presence of a diluent, the mean-
square chain displacement length r2 in the iso
tropic and unswollen s ta te may be less than r0

2, 
hence an increase in volume will be required to 
reach this reference s tate . In other instances, 
where for example n>2 has been diminished by a 
change of temperature subsequent to formation of 
the network, shrinkage of the network to a volume 
less than t ha t of the polymer itself might be re
quired. The physical impossibility of realization 
of the reference s ta te in such a case does not, of 
course, detract from its usefulness as a reference 
s tate . 

Letting AS^ represent the difference between the 
(^'elastic") _entropy of the s ta te characterized by 
x2, y2 and z2 and the reference state, we thus obtain 

ASei = (3£*/2)[-(x2 + y2 + sz)/V + 1 + In <<*>] 
(31) 

where 
_ _ <a> = &2Jh*/x7y7wy/» (32) 

If Xi2 = y\2 = Si2 = n 2 / 3 represents the isotropic s tate 
of the same volume as corresponds to Xi, y%, zit then 

<a> = (r?/&)'/* (32') 
(35) P. J. Flory, J. Chem. Phys., 18, 108 (1950). 
(36) If the chains are joined by interconnections of higher function

ality, the factor '/« is to be replaced by 2// where / is the functionality. 
See ref. 35. 

The parameter <a> measures the geometric mean 
of the linear dilation relative to the reference state, 
hence we shall refer to <a> as the dilation factor. 
I t varies as the cube-root of the volume of the net
work, and must therefore depend on the degree of 
swelling by a diluent. If i>? represents the volume 
fraction of polymer in the swollen network, it 
follows tha t 

< a > = <a>o»2~V» (33) 

< a > o being the value of the dilation factor in com-
' plete absence of diluent. Diluent may have been 
present during cross-linking, hence < a > o is not 
necessarily the value of the linear dilation of the 
network a t the time of its formation. Moreover, 
since in general rQ

2 will depend on the temperature, 
the value of < a> at constant volume (and the value 
of < a > o also) may vary with the temperature. 

If the network is formed by cross-linking polymer 
molecules in the configurationally random isotropic 
state, then a t the same network volume and tem
perature as prevailed during cross-linking <a> = 
1. If cross-linking was performed in this manner 
in absence of diluent, then at the temperature of 
network formation < a>o = 1; upon subsequently 
swelling the network <a> = Vz~l/K The value of 
<a> for a network formed by cross-linking ori
ented chain molecules will depend on details per
taining to the dimensions of the molecules and 
their arrangement; <a> for the network a t its ini
tial volume and temperature may be either less 
than or greater than unity, as is evident from the 
definition of < a > according to eq. 32. Equations 
31, 32, 32 ' and 33 appear to be generally applicable 
to any situation provided only tha t the deforma
tions are affine and the polymer is amorphous. 

We restrict our t rea tment to simple elongations, 
in which a single coordinate (x) is varied, while the 
remaining coordinates (y and z) change equally as 
required by the designated dilation. Thus, y2 = 
s2, and according to eq. 32 

y = Z2 = <a>
3wy'2/yHsiy/' (34) 

Substitution of eq. 34 in 31 yields 

AS8i = (kv/2)[-Wfrf - 2<a>3(^V3"x)'A + 3 + 
31n<a>] (35) 

In order to relate the root-mean-square axial com
ponent (x2)!/z to the length L of the sample and the 
number v of chains which it contains, we introduce 
a quant i ty <r defined as the number of chain vectors 
passing through a plane transverse to the axis of 
the sample. For simplicity, let each vector be as
signed the direction which causes its x-component 
to be positive. The number of vectors originating 
per unit length is v/L, L being the macroscopic 
length of the sample. Let Px dx be the fraction of 
the vectors having components with magnitude x to 
x + dx along the fiber axis. Vectors of this group 
which originate within the distance x preceding a 
given transverse plane will pass through tha t plane. 
The number of such vectors is (vx/L)Px dx. The 
total number of vectors passing through the plane 
is therefore 

a = (v/L) C°° xPrdx 

or 
O- = (v/L)x (36) 
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where x is the mean value of the magnitude (i.e., 
the modulus) of the ^-components of the chain vec
tors. I t will be convenient to use instead 

<r' = ox I &Y h = {V/L)&yh (37) 

The ratio (x2) 1 / ! /x will differ from unity accordingly 
as the distribution of axial components is variable 
(assuming all chains to be of equal contour length, 
i.e., to contain the same number of units37)- For 
randomly cross-linked chains (xr)1/2/x = (ir/2)l/2 

= 1.25; for networks formed by cross-linking or-' 
dered chains, this ratio should closely approach 
unity. 

Both a and <x' must in any case be invariant to 
deformation, provided only t ha t the transformation 
of the vectors by the deformation is affine. I t is 
permissible therefore to subst i tute for x2 and L in 
eq. 37 the values, Xi2 = ri2/3 and Li, of these quan
tities in the isotropic s tate of identical volume (i.e., 
the same <a>). We thus obtain 

U = (jvV)(n73)'/2 = (v/<r')(r?/3y/i <a> (38) 

which defines the length Li of the sample in the 
isotropic state specified above. From eq. 33 

Li = ( ^ / a ' )W/3 ) ' /Ka>„ i r ' / ' (38') 
Li = L10V2-V* (38") 

where Zi0 is the isotropic length when all diluent 
has been removed. 

The essential distinction between the cross-
linking of oriented molecules on the one hand and 
of random coiled molecules on the other becomes 
apparent upon relating c (or a') to the tota l num
ber of chains v in the two cases. If the chains are 
sufficiently oriented, along the fiber axis, then <r may 
at once be identified with the number of macromole-
cules in a cross-section. Hence a (and a-') must be 
independent of the degree of cross-linking. To con
sider the mat te r from the point of view of eq. 36 and 
37 which define a and a', we note t ha t the average 
projected distance x between cross-linked units 
along a given chain (sufficiently oriented, cf. seq.) 
must vary inversely as the degree of cross-linking, 
and hence inversely as v. The products v x in 
eq. 36 and v (x2) I /2 in (37) must therefore be inde
pendent of v, hence a is invariant with v. 

Whereas in the case under consideration <r is in
dependent of v, L1 increases with v. This may be 
shown as follows. According to eq. 29, ro2 in
creases proportionally to the number of units per 
chain; it must therefore vary as v~l. In view of 
eq. 38 and the constancy of a' the isotropic length 
L\ must increase as v'/2 <a> in the course of cross-
linking sufficiently oriented chains. Depending on 
details of the chain packing and orientation which 
evade generalizations, <a> may either increase or 
decrease with v. The change should however be 
very small, hence it is justified to conclude t ha t L1 

will increase very nearly as v1 •'*. 
The network formed by cross-linking (gaussian) 

polymer chains in the unoriented s tate is necessarily 
isotropic. Li may therefore be identified with the 
length of the specimen when cross-linked, its value 

<37) Th i s a s s u m p t i o n has been employed in r u b b e r e last ic i ty 
theory :!-'3:1 I t coiiltl be e l imina ted by i n t r o d u c i n g a fu r the r ave rag ing 
process, rile resul t s would no t , however , be aiTeeted 

being independent of v. To be sure, the value of 
Li may be altered by swelling or de-swelling sub
sequent to creation of the network, as is manifest 
in eq. 36 ' and 36". However, for any specified 
degree of swelling, Li will be invariant with cross-
linking for networks formed in the manner stated. 
Lett ing L = Li = constant in eq. 37 and observing 
tha t Xj2 = r 0

2 /3 varies as v~l, we find a t once tha t 
a' (and a) must increase as v1''2. 

This increase in the number of chain vectors in a 
cross section comes about because a given random 
coiling chain may penetrate the cross section sev
eral times in the course of its pa th from one cross 
linkage to the next. Consider, for example the 
molecule having the configuration indicated in Fig. 1. 
Let it be cross-linked initially a t the points 1, 2 and 
3. One of its chain vectors, namely, tha t between 
2 and 3, then passes through the cross-section indi
cated by the broken line. If a further cross linkage 
is added a t point 4, the plane will be penetrated by 
three successive vectors asssociated with the mole
cule considered, namely, the vectors (1,4), (4,2) and 
(2,3). The possibilities for increasing a in this man
ner must vanish as backward looping of the chains 
is suppressed by orientation. The physical basis 
for the distinction between cases considered is thus 
obvious. 

Elimination of x2 and ro2/3 from eq. 35 by use of 
eq. 37 and 38, respectively, gives 
AS6, = ~(kv/2)[{<a>/L;)\L* + 2Li3/L) - 3 -

31n<«>] (39) 

or 
AS0I = -(^/2)[(< a>0 /Xi„)2(L2 + 2UiJLv1) - 3 + 

lm/2 - 31n<a>0] (39') 

The force of retraction is given by 

/ = (dAFei/dDp.r.v, = (i>AFei/dL)p,T.<a> (40) 
We consider for the present tha t the degree of swell
ing (1/V2) remains constant in deformation. Under 
the assumption t ha t the enthalpy change with de
formation is negligible (in accordance with studies 
on various polymers), AFe\ = — TASei. I t follows 
from eq. 39 tha t 

/ = BTL(I - Li3/L3) (41) 

where 

B = kv«a>/LiY = kv«a>o/LioY (42) 
Substitution of a = LfLi in these equations leads 
to the alternative relation 

/ = (kTv<a>2/Li)(a - 1 /a 2 ) (43) 

= (kTv<a>oVvY/'Lio)(a! - 1/a2) ( 4 3 ' ) 

The stress r referred to the cross-section of area A1 
in the isotropic state, given by f/Ai, is 

T = (kTv/V)<a>
2(a - l / « 2 ) (44) 

where V = A1L-, is the volume at the dilation < a > . 
The stress r0 referred to the isotropic cross section in 
absence of diluent is 

ro = ( i r» /F , ) )<«>, ! j r ' ' ' (« - I/"2) (44') 
where V0 is the unswollen volume. 

The foregoing equations for the retractive force 
and stress are general, within the limitations of the 
gaussian approximation at any rate. They apply 
Cf]UaIIy to networks formed from molecules in ran-
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dom configurations and from highly oriented mole
cules. I t follows t ha t the elastic behavior of vari
ously formed networks should be indistinguishable 
insofar as dependence of stress on the relative 
length a is concerned. The equations given in the 
preceding paragraph correspond fully to those ob
tained in previous theories of rubber elasticity,32 '33 

except for the presence of the dilation factors <a> 
and < a > 0 . The correspondence is exact if we set 
<a>0 = 1 and hence <a> = D2~1 /3 . This situa
tion should apply if the network is formed in the ab
sence of diluent and if the chain configuration 
parameter ra

2 is not altered by a change of tempera
ture subsequent to network formation (see eq. 32')-
The present equations are more general than those 
previously given in t ha t account is taken of circum
stances in which < a > 0 =1= 1 owing to non-compli
ance with either of the conditions mentioned. 

A most impor tant difference between the two 
cases considered is apparent on inspection of the 
parameters B and Li in eq. 41 . Whereas according 
to eq. 42 B is proportional to v for cross-linking of 
random chains, it is independent of v in networks 
formed by cross-linking well oriented chains, L\ 
being then proportional to y1/! < a > (see above). 
Thus, in the former case L1 is independent of v but 
B increases directly as v; in the la t ter case L\ in
creases approximately as / / 2 bu t B is independent 
of v. 

Equat ion 41 can be expressed in a form which 
may prove more useful for comparison with experi
ments on networks formed from well oriented chain 
molecules by introducing the length Lm of the fiber 
at maximum extension—a quant i ty amenable to es
timation from the structure of the molecules com
prising the fiber. The maximum length of one 
chain between cross-linkages is n'V according to eq. 
30, and the mean number of chains in one linear 
sequence throughout the length of the fiber is v/a. 
Hence 

im = (v/<r)n'V (45) 

Recalling eq. 29 and 38, and ignoring the difference 
between o- and a' in this case, we then obtain the 
alternative expressions 

B = (3k<r/VLm) = 3km'/Lm
2 (46) 

The equivalent segment length (see eq. 29 and 30) 
may be taken as the ratio r0

2/rm, which may be 
evaluated from studies of molecular configuration 
and fiber structure. The retractive force to be ex
pected a t a given fiber extension may thus be cal
culated. For L sufficiently greater than Li, we 
have by eq. 41 and 46 

/ S (ZkTa/V)(L/Lm) = ZkTvnXL/L^) (47) 

When this condition applies the retractive force at 
a given length is independent of the number of 
cross linkages. 

Elastic Properties at Swelling Equilibrium.— 
Thus far in Pa r t I I , the polymer network has been 
t reated as a closed system, i.e., the quant i ty of 
diluent, if any, in the network has been assumed to 
be fixed during deformation. We now treat the 
network as an open system in equilibrium with a 
surrounding liquid phase. For simplicity, the 
diluent absorbed by the polymer is assumed to 

I 
Fig. 1. 

consist of a single component. The following con
siderations would apply equally to a diluent mix
ture provided mole ratios of the substances parti
tioned between the two phases are the same in 
each. 

In accordance with procedures previously used 
in treat ing swelling equilibrium,32 '36 we express the 
free energy of the system as 

AF = AF.I + A^M (48) 

where AFu is the free energy of mixing polymer and 
diluent. The elastic free energy AFei may again be 
equated to — TASei. The free energy of mixing is 
considered to depend on the composition of the 
network phase, bu t not on its deformation; A5ei 
depends on both. At swelling equilibrium (dAF/ 
5«i)p,r , i = 0, where «i is the number of moles of 
diluent contained in the network phase. Hence 

T(dASe\/dv2)T,p,L (dv2/dni)T,p,L = (dAFa/dni)T.p 

The first of the partial derivatives on the left is 
readily evaluated by differentiating eq. 39' , L;0 

being a constant of the structure. The second of 
the partial derivatives reduces to —»2 2Vi/F 0 where 
Vi is the molar volume of the diluent and V0 is the 
volume of the network in absence of diluent. For 
the derivative on the right, we adopt an ex
pression of the form given by polymer solution 
theory. Presuming the external phase to consist 
of pure diluent, this can be expressed as 

(dAFM/d«i)r,p = RT[In(I - V2) + V2 + xi»a2] 

where xi is an interaction parameter.3 8 Combin
ing these expressions, we have a t equilibrium 
(wl/NaVo)[<a>o>(Li0/L) - v2/2] = -

[In(I - v2) + v2 + X1V1'] (49)39 

where iVa is Avogadro's number. 
If the retractive force / is zero, L = L\ = v2~

w* 
Lio, and eq. 49 becomes 

("ViAV.F„)[<a:>„V/» - Vi/2] = -[In(I - V2) + 
V2 + xi»2

2] (50) 
Upon setting <a>0 = 1, this relationship becomes 
identical with the standard expression for swelling 
equilibrium in a network under no external con
straint.32-36 

T h e force of retraction exerted by a deformed, 
swollen network which remains a t equilibrium with 
an external liquid phase is given by 

/ = (dAF/dL)PlT.v2 

(38) See ref. 32, C h a p t e r X I I . 
(39) ICq. 49 with < « > o = 1 is identical with er|, !."> of ref. 3;'>. 
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which reduces a t once to eq. 40 inasmuch as AFM of 
eq. 48 is independent of L. The previous relations 
for the retractive force, deduced for the closed sys
tem, are immediately applicable to the present case.' 
We now require however tha t V2 be assigned its 
equilibrium value dictated by eq. 49. The con
centration V2 thus becomes a function of L, and 
therefore of / , for the open system. If, therefore, 
eq. 41 is used for the force expressed as a function 
of the length, L\ given by (38") is also a function of 
the swelling ratio (^a-1)- I t is expedient to re 
write eq. 41 as 

/ = BTL(I - Lj/v-2L*) (41') 

where B according to eq. 42 is independent of V2. 
Since V2 is a function of L according to eq. 49, the 
functional dependence of / o n L for the open system 
is obtained by simultaneous solution of eq. 4 1 ' and 
and 49. The change of V2 with L is small, however. 

Part III. Crystallization Equilibrium 

Amorphous-Crystalline Transition under Stress. 
—The equilibrium between crystalline and amor
phous phases under a tensile force may be t reated 
by combining the results of Par ts I and I I . Spe
cifically, the results of Pa r t I I may be used to fur
nish the "equation of s t a t e " relating AL of eq. 11 to 
the force/ . A relationship between / and the tran
sition temperature, or melting point, T may then 
be obtained by integration. The procedure is anal
ogous to integration of the Clausius-Clapeyron 
equation for liquid-ideal vapor equilibrium. 

By definition, AL = L a — Lc where the length Z,a 

of the totally amorphous sample may be identified 
with L of Pa r t I I . (The superscript, omitted in 
Pa r t I I since only the amorphous phase was under 
consideration, is here restored.) Upon substi tut
ing eq. 41 in 11 we thus obtain 

(L" - L°)d[L* - LiV(Z,')2] = (AHfB)A(IfT) (51) 

Integration between the limits Lc and Z>, B, Li and 
Lc t reated as constants, yields 

(L" - L*)2[l + 2LiVMI-'')2] = 
2(AHfB)(IfT1n - 1/7V) (52) 

where Tm is the melting point, or transition tem
perature, a t a force such t ha t the amorphous length 
is L3-, and Tm

c is the melting point when La = Lc. 
Substi tut ion from eq. 46 for B provides the alter
nat ive expression 

[(L" - L-VL111]S[I + 2LiVL=(L")2] = 
(2Ah'/3R)(IfT111 - 1/7V) (53) 

where Ah' is the heat of fusion per mole of equiva
lent elastic elements; i.e., Ah' = AHNJvn'. For 
Tm < T^ eq. 52, or 53, yields two solutions 2>, one 
less than and the other greater than Lc. There 
are no real solutions for Tm>Tm

c- Thus, Tm
c 

appears to be a critical temperature above which 
the crystalline phase cannot exist. 

I t is to be noted, however, t ha t a t the critical 
length 2> = Lc the chain extension may be near its 
maximum L m ; in any case this limit is likely to lie 
beyond the range within which the gaussian ap
proximation is legitimate. The equations given 
above will accordingly be in error for L> values ap
proaching Lm or Lc, and the literal interpretation of 
Tm

c given above will be quanti tat ively in error. 

Since Lc and Tm
c occur merely as reference quanti

ties in eq. 52 and 53, their presence does not vit iate 
use of the relationship for values of 2> within the 
gaussian range. Amorphous polymers invariably 
suffer rupture at lengths considerably less than Lm, 
hence the restriction on L a will not be serious. 

Integration of eq. 51 between the limits L\ and 
Z,a leads to the relationship 
2(L» - U)[L* - LiV(L")5] - [(L")2 + 2L;3/L» - 3L1

2] = 
(2AHfB)(IfT1n - IfTJ) = 2Lta\Ah'/3K)(I/Tm ~ IfTj) 

(54) 
where Im' is the equilibrium temperature for melt
ing to an isotropic amorphous phase. We thus ob
tain the reciprocal melting temperature Tm 
relative to l / T V as a function of the amorphous 
length L a . The relationship of Tm to the tensile 
force / may be obtained by simultaneous solution 
of eq. 41 and 54.40 I t is to be understood tha t 
equations 52 to 54, as well as others which follow, 
refer to states of phase equilibrium; subscripts to 
this effect have been omitted for simplicity. 

If the deformation is sufficient to justify use of 
eq. 47 instead of (41), i.e., if (Li/Xa) ; i < < 1 (see 
eq. 41), eq. 53 and 54 simplify to 

(L" - L-YfLj ^ (2Ah'f3R)(IfT1n - IfT111') (55) 
and 
[(L-Y - 2L*L°]/Lj ^ (2Ah'f3R)(l/Tm - XfTj) (50) 

Elimination of L*/Lm from the approximate equa
tions 55 and 56 through use of eq. 47 then yields 
UfTU = (3km'fLJl(L"/Lj ± 

V(2Ah'/3R)(ifTia - TfTj)] (57) 
and 
(f/TU ~ (3kvn'fLj{(L*fLj ± 

V(WLj2 + (2Ah'/3'RT(IfTj -'TfTj)] (58) 

where the subscript designating phase equilibrium 
has been restored. 

These approximate results admit of simple graphi
cal representation. Consider the case of a homo
geneous fiber whose elastic behavior in the amor
phous s tate is satisfactorily described by eq. 47. 
As shown in Fig. 2, f/T a t the temperature T 
should increase linearly with L from O to A. At 
A crystallization sets in, and the length then in
creases without increase i n / until the phase trans
formation is complete a t B. The value of f/T over 
this region corresponds to the lower root of eq. 57, 
or of eq. 58. In consideration of the relatively high 
rigidity to be expected for the crystalline state, the 
stress has been assumed to rise almost vertically 
with elongation beyond point B . 

If the aforementioned limitation of the gaussian 
approximation is ignored, and we assume for the 
moment t ha t the polymer chains are capable of 
accommodating an extension well beyond the 
length Lc, then according to eq. 57 and 58 the 
amorphous phase should be regenerated along the 
line D E . The force during this (hypothetical) 
transition corresponds to the larger root given by 
eq. 57 or 58. The line connecting A and E is the 
continuation of the stress-strain relation (OA) for 

(40) Equations 52, 53 and 54 may be derived alternatively by ap
plication of the condition A(F — /L) ~ 0 for phase equilibrium at 
constant P, T and / . For this purpose AF is resolved into a free energy 
of fusion in the reference state denned previously and the elastic 
free energy AFei. 
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the amorphous phase. With increase in tempera
ture, points A and E are displaced toward point C. 
The horizontal segments AB and DE consequently 
must diminish in length with rise in temperature, 
finally vanishing at the critical point C. 

The predicted remelting of the crystalline phase 
can scarcely be expected to be encountered in ac
tual fibers. Even if Lc were appreciably less than 
Lm, rupture of the amorphous phase would im
mediately follow its regeneration. 

Use of the complete equations 54 and 41 would 
bring about replacement of the linear stress-
strain curve running through the origin in Fig. 2 by 
a curve beginning at L = Li>0. This curve is 
asymptotic to a line through the origin. Other 
features of the diagram would be unchanged. 

If the fiber is immersed in an excess of a diluent 
and the amorphous regions are swollen to equilib
rium with the diluent, then Ah' is to be replaced 
in the preceding equations by Ah', the heat of fu
sion plus the integral heat of dilution per equivalent 
elastic element (see Part I). For a uniform fiber, 
Ah' should remain constant throughout the phase 
transformation. 

If, however, the fiber contains a fixed amount of 
diluent, and this is confined to the amorphous re
gions, then, in accordance with the previous con
sideration of this case in Part I, Ah' must be re
placed by Ah', the heat of fusion plus the partial 
heat of dilution. Since the composition of the 
amorphous phase must then vary with X, Ah' will 
vary, and the horizontal straight lines AB and 
A'B' in Fig. 2 must be replaced by curves with 
positive slopes and curvatures. 

Relationships corresponding to those given above 
may be shown to hold for an inhomogeneous fiber 
(Part I), provided, however, that they are inter
preted to apply to a particular element (j) of the 
fiber which is in phase equilibrium at the point des
ignated by T and / j , or T and Lf-. The line AB and 
BD must, of course, be replaced by a sigmoid 
curve, whose form will depend on the distribution 
of elements according to their characteristic transi
tion temperatures (7In,.,) 

Effect of Cross-linking on the Melting Tempera
ture.—The melting point Tm

{ of the unstressed, 
isotropic fiber has been introduced above merely as 
a constant of integration. The manner of de
pendence of TV on the degree of cross-linking will 
now be examined. 

For this purpose we regard Tm
l as the ratio of the 

heat of fusion to the entropy of fusion. I t is ex
pedient to separate AS into terms AS0, AS°x and 
ASei', representing, respectively, the entropy of 
fusion in the absence of constraints imposed by 
cross linkages on the chain configurations, the 
alteration of the chain configurational entropy due 
to the presence of the cross linkages in the hypo
thetical reference state (amorphous; see Part II) 
for which a = <a> = 1 and hence r2 = r0

2, and 
the entropy change in passing from this state to 
the real isotropic state wherein a = 1 but < a > 
assumes its value characteristic of the given net
work structure. We write 

1/7V = (AS0 + AS°x + ASJ)IAH 

D| -T^ 

A 
S 

S 
/ 

Fig. 2. 

To the extent that the formation of cross-
linkages does not interfere directly with crystal
lization of the units involved in cross-linkages, both 
AH and AS0 may be taken to be independent of the 
degree of cross-linking. This seems a reasonable 
assumption for the fibrous proteins under considera
tion.41 Hence, AS0 may be identified with the 
entropy of fusion for the polymer containing no 
cross linkages, and 

1/7V = (XITl) + (ASx
0 + ASal')/AH (59) 

where Tm° is the melting point for the polymer with
out cross-linkages, or, perhaps more accurately, in 
the absence of the chain configurational restraints 
imposed by the cross-linkages. 

If <a> is known, ASei' may be obtained from eq. 
39 with L — L\; its contribution will be very 
small. Attention centers therefore on ASx0, which, 
neglecting ASei', represents the alteration of the 
entropy of fusion which results from the presence 
of the cross-linkages. I t is to be observed that the 
ordinary entropy changes associated with the 
chemical reaction responsible for cross-linking are 
of no importance, inasmuch as they affect the 
crystalline and the amorphous states equally. 

For the cross-linking of random chains, ASx0 is 
essentially zero42'43 for the reason that units are 
paired at random in the formation of the cross 
linkages. Hence, cross-linking does not effect a 
decrease in the configurational disorder charac
teristic of random chains.43 In the cross-linking 
of polymer chains arranged in parallel array, an 
element of the order existing in this state is im
posed on the network structure thus generated. 
When a given unit of a particular molecule is to be 
cross-linked, it must join with one of its immediate 
neighbors in the ordered array. Its possibilities are 
thus limited to cross linking with one of several 

(41) In other polymers, cross-linked units are likely to be excluded 
from crystalline regions by their steric requirements, with the result 
that the entropy of fusion {i.e., AS0) will be increased by an amount 
Rv/Nn per mole of units,36 where v is the number of cross-linked units 
and Nn is the total number of units. The melting point should there
fore be depressed on this account. Observed depressions of the melting 
point by cross linkages in vulcanized rubber (L. Mandelkern, private 
communication) are considerably greater than would be predicted in 
this way, possibly owing to further restraints on crystal development 
arising from the cross linkages (see A. W. Gent, J. Polymer Sci., 18, 321 
(1955)). The increase in melting point here predicted will be modified, 
and possibly outweighed, by these factors. 

(42) P. T. Flory and J. Rehner, Jr., J. Client. Phys., 11, 512 (1943). 
(43) F. T. Wall and P. J. Flory, ibid., 19, 1435 (1951). 
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chains. More important , the unit in the chain in
volved is uniquely specified, for it must occur in 
the adjacent position in the highly oriented (crys
talline) state. This uniqueness is maintained 
throughout subsequent transformations, such as 
melting, provided merely tha t the original net
work structure remains intact . 

This situation is depicted in Fig. 3, where unit A 
of one chain is to be cross-linked to adjacent unit 
A ' of another. Preceding and succeeding cross-
linked units along the respective chains are desig
nated by Ci, C2, C3 and C4. The given unit may 
in each case cross-link with any one of its immediate 
neighbors (six for hexagonal packing), hence the 
cross linkage will not in general unite the same pair 
of chains joined by the cross linkage at A. 

The alteration of the entropy of fusion (ASx0) by 
the cross linkage in question may be deduced by 
computing the probability tha t the two units in
volved occur in suitable juxtaposition. The prob
ability of fulfillment of this condition in the crystal
line state may be expressed by a ratio of volume 
elements A T X / A T , where ATX is the range of co
ordinates available to one unit relative to the other 
after the cross-linkage is formed, and Ar refers to 
the corresponding range for neighboring units in 
the crystalline state prior to cross-linking. 

The probability t ha t such a pair of units "find 
each other" in the amorphous state will be desig
nated by o)A Arx- (In the ordinary cross-linking 
of random chains, this calculation becomes super
fluous for the reason tha t unit A may combine with 
any other eligible uni t of the system.42>43) The 
cross-linkages Ci, . . .Cj are considered to have been 
established previously. The contribution of cross-
linkage A to A1S

0X will therefore be given by 
k IrIt(UA^i-XX-WATx)-1] = * In(UAAv) (60) 

where k is the Boltzmann constant. 
The neighboring cross linkages Ci, . . .C4 may, 

without error, be t reated as if they are si tuated at 
their most probable positions in space. For the 
purpose of evaluating COAAT it is convenient to 
consider the chain from Ci to C2 to be severed a t A, 
and tha t from C3 to C4 at A ' . Then COAAT may be 
equated to the probability t ha t the ends of all four 
chains meet in Ar divided by the product of the 
probabilities t ha t the pairs of severed ends are 
suitably si tuated to be re-united with restoration 
of the initial structure. Assuming gaussian chains 

Arf W1(Ii) Wj(V2) TT',(r3) Wj(Tj)Ar 
T f W1(T1)Wi(I^dT fW}(t3)Wi(Ti)dr 

where IFi, W2, etc., are gaussian functions (eq. 28) 
for the four chains extending, respectively, from Ci, 
Cs, etc., and T1, r2, etc., are the corresponding vectors 
reaching from the mean positions of the respective 
cross linkages Ci, C2, etc., to the volume element 
dr . The integrations extend over all space. If r 
represents the vector from an arbi trary origin to 
the volume element dr , and R1, R2, etc., the vec
tors to the points Ci, C2, etc., then T1 = r — Ri, r2 

= r — R2, etc. Using cartesian coordinates and 
separating the integrals over the components x, y 
and z of r, we obtain COA as the product of three 
factors like 

/ e x p l - g ^ s - X1Y .... -,A2U -
WA'X y-exp[-;3i2(x~- X1)2 - A2(x - X2Y]Ar . / e x p f - f j , \ x 

where ^1-, etc., represent the values of 3/2 r0
2 for 

the respective chains (see eq. 28) and Xi, etc., are 
the components on the x-axis of the vectors Ri, etc. 

Evaluation of the integrals yields 

= r (ft2 + A2XA2 + A2) i 1 / ' 
WA,X LvKft2 + ft2 + ft2 + A 2 )J 

, [/(A2X1 + A2X2 + A2X3 + MXiY _ 
' PL A2 + A2 + A2 + A2 

(,A2A1 + A2X2)
2 _ (A2X3 + A2A4)H 

A2 + A2 A2 + A2 J ^ ' 
By choosing as origin of coordinates the most prob
able position of junction A, the first term of the 
exponent reduces to zero. The remaining terms in 
the exponent may be evaluated as averages taken 
over similar pairs of severed chains, each charac
terized by the same ft and Bi + 1 (i.e., by the same 
number of units Wj and n-i+1). In the isotropic 
reference state X3 and ATj+ 1, for a set of equiva
lent chains will be distributed over random values, 
obeying the characteristic gaussian functions for 
these chains. These terms may be evaluated 
therefore as their averages over the pair of gaussian 
distributions of the X's. The result is 

<(A2A'i + A2-iX i_1)2> = (A2 + ft2+0/2 
Substitution into eq. 61 yields 
«A,X = [(A2 + A2XA2 + ft2)MA2 + A2 + 

A2 + (V)]1Ae-1 (62) 
as the mean value of COA.X to be expected for cross-
linking of units connecting chains having the given 
set of B values. The product of three such expres
sions yields COA = O>A,« £>A,y COA,3. Wi thout serious 
error, each Bi2 in eq- 62 may be replaced by the 
average /S2 = 3/2 772 = 3/2 «"' I'2 (see eq. 29); 
the corresponding expression for WA,J and OJ\,Z may 
be treated likewise. Thus 

uA AT = (A77re2)s/2AT (63) 

= ( 3 / 2 ^ 2 / ' V ) V ' 2 A T (63') 

We thus obtain the mean factor by which the 
relative "configurational probabil i ty" of the amor
phous s tate is diminished as the result of forming 
one cross linkage between units situated as neigh
bors in the crystalline array. If the distribution of 
cross-linked units along any given chain molecule 
is random, then the average number of statistical 
units between cross linkages will be the expected 
number of such units extending from a unit selected 
a t random to the next cross-linked unit along the 
given chain. This is the ordinary number average 
per chain between cross linkages. We may there
fore take 

«' = XJV = NJ 2K 

where AT
S is the total number of statistical segments, 

or units, in the system, v is the number of cross-
linked units, and K = v/2 is the number of cross 
linkages. Hence 

WA A T = (3/7r/'2)3A(K/e2A's)
sAAT (64) 

The appropriate factor for a total of v/2 cross 
linkages is given by the product 

r/l _. 
S U A T V A = II wAT 

.. = 1 
= C ' . ' - ( ( ' ! X)-V<P' . '=( r /2 ) : j i ' ! (65) 

-__ .Yj)2IdT w h e r e 
- X3)2 - ft2(x^ X4)2JdT C = (3/2,TZ'2)V2AT 
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is a dimensionless quantity of the order of unity. 
The entropy change A.Sx is given accordingly as 
klnpUArK2], or 

ASx kv[{l/2)lnC - 9/4 + (3/4)ln (v/N,)] (66) 

This result probably is to be preferred over a 
previous estimate42 which, in the present notation 
and with neglect of the term corresponding to 
InC, is 

ASx = kv[{9/8)ln(v/N.) - 3.4] 

Schellman18 recently treated the effect of intra
molecular cross linkages in stabilizing the configu
ration of an individual (folded) polypeptide chain, 
with a result not unlike that given in eq. 66. 

According to eq. 59 with neglect of A5ei', and eq. 
66 

( l / r ° m - 1/T\„) = (Rv/NsAk')(A - ( 3 / 4 ) / » ( K / A ' S ) ) (67) 

where A = 9/4 — (1/2) In C. For moderate or 
low degrees of cross-linking, such that the fraction 
Na/v of segments cross-linked is small, the loga
rithmic term in eq. 67 should exceed A. We thus 
conclude that cross-linking of oriented fibers should 
result in an increase in melting temperature 
TV. This is indeed true of collagen fibers cross-
linked with various tanning agents. Ordinary 

vulcanization of rubber, on the other hand, de
presses its melting point somewhat. This again is 
in accord with theoretical prediction, as set forth 
above. 
ITHACA, N E W YORK 
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Flow Dichroism and its Application to the Study of Deoxyribonucleic Acid Structure1 

BY LIEBE F. CAVALIERI, BARBARA H. ROSENBERG AND MORTON ROSOFF 
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An apparatus has been constructed which enables dichroism measurements to be made on flowing solutions. Viscosities 
can also be determined using a manometer in the system. An analytical treatment has been developed which permits the 
calculation of apparent rotary diffusion constants and dichroism values at complete orientation. The method has been 
applied to solutions of deoxyribonucleic acid and the results are discussed in terms of its structure. 

Introduction 
The dichroism of flowing solutions has been 

measured in a number of cases2'3 but the technique 
has not been fully developed as an analytical tool. 
In the course of an investigation dealing with the 
effects of salt and pH changes on the macrostructure 
of DNA, we have found dichroism measurements, 
using plane-polarized ultraviolet light, to be ex
tremely sensitive to changes in structure. In gen
eral, the sensitivity to changes in shape is ap
proximately equal to that of viscosity measure
ments. Furthermore, although the method is 
analogous in some respects to flow birefringence, it 
is unique in that it yields information about specific 
parts of the molecule. In this paper we present 
an analytical treatment which leads to apparent 
rotary diffusion constants and dichroism values 

(1) This investigation was supported in part by funds from the Na
tional Cancer Institute, National Institutes of Health, Public Health 
Service (Grant No. C-471) and from the Atomic Energy Commission 
(Contract No. AT(30-1)-910). 

(2) A. Butenandt, H. Freidrich-Frickson, G. Hartung and G. Scheibe, 
Z. physiol. Chem., 274, 276 (1942). 

(3) (a) W. E. Seeds and M. H. F. Wilkins, Disc. Faraday Soc, 9, 
417 (1950): (b) D. Zucker, J. F. Foster and G. H. Miller, J. Phys. 
Chem-. 86, 170 (1952). 

for complete orientation, thus providing informa
tion concerning both the shape and the "internal" 
structure of the DNA molecule. 

Experimental 
Description of the Flow Dichroism Apparatus. The Cell. 

—The cell4 was constructed of clear fused quartz according 
to the following specifications: it was rectangular with inner 
dimensions of 0.238 X 12 X 120 mm., the optical path being 
0.238 mm. The thickness of the quartz walls was 2 mm. 
Quartz tubing (outer diameter 6 mm.) was fused at either 
end of this section, providing a facile inlet and outlet. The 
tubes were gently tapered at the junction of the rectangular 
section to minimize pressure losses in the flowing solutions. 

The housing for the cell was constructed in the Sloan-
Kettering Institute Machine Shop. Appropriate guides 
were inserted to ensure that the rectangular faces were 
parallel to the Beckman spectrophotometer housing block. 
Provision was also made for sliding the cell away from the 
light path in order to balance the spectrophotometer. 

The Driving Mechanism.—The solutions were placed in 
a 25-ml. medical syringe driven by a worm gear actuated by 
a synchronous Bodine motor (output = 6 r .p.m.) . A set 
of gears between the motor and the worm gear provided 
about 15 speeds. At the end of the path of the syringe the 
worm gear was reversed automatically by means of a micro-
switch. The rate of discharge from the rectangular section 
was easily calculated from the volume discharged from the 
calibrated syringe. 

(A) Made by the Amersil Company, Hillside, New Jersey. 


